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Abstract 
Internal waves excited by the dynamical diffraction 
of X-rays from a single set of crystal planes perpen- 
dicular to the incidence surface can produce both 
Bragg diffracted and reflected beams and Laue 
diffracted and transmitted beams for crystal slabs of 
finite thickness. The excitation of Bragg and Laue 
beams for grazing-incidence diffraction geometries is 
investigated experimentally and theoretically. The 
traditional dispersion surface picture for describing 
allowed internal and external wave vectors is 
developed to illustrate how the Bragg and Laue beams 
arise. Experiments performed on a thin silicon wafer 
demonstrate the evolution of the Laue beams from 
the back surface into Bragg beams at the front surface 
of the crystal. The results are in good agreement with 
calculated curves obtained from the 'n-beam' diffrac- 
tion theory of Colella [Acta Cryst. (1974), A30, 413- 
423]. This theory is shown to be very useful for 
grazing-incidence excitations because of its com- 
pletely general treatment of Bragg and Laue beams, 
and the exact numerical nature eliminates the need 
for approximations. Experiments also reveal how the 
presence of a 40 ~ AuPd layer on the incidence 
surface suppresses the Bragg-diffracted beam but not 
the specular and Laue beams. 

1. Introduction 
The diffraction of X-rays from planes perpendicular 
to the surface of a flat semi-infinite crystal has 
received considerable attention in recent years 
because of the dominant role played by the surface 
in determining the directions and intensities of the 
diffracted beams (Baryshevskii, 1976; Andreev, 
Kov'ev, Matveev & Ponomarev, 1982; Afanas'ev & 
Melkonyan, 1983; Aleksandrov, Melkonyan & 
Stepanov, 1984; Cowan, 1985; H6che & Brfimmer, 
1986; Cowan, Brennan, Jach, Bedzyk & Materlik, 
1986; Bernhard, Burkel, Gompper, Metzger, Peisl, 
Wagner & Wallner, 1987). For a plane-wave beam of 
X-rays incident at a grazing angle to a crystal surface 
and also satisfying the Bragg condition for diffracting 
from a reciprocal-lattice vector H parallel to that 
surface, the usual diffracted beam would be directed 
into the crystal if it were not for the slight change in 
the index of refraction at the surface. The diffracted 
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beam is instead 'reflected' from the surface, in a 
manner similar to the specular reflection of the 
incident beam for grazing angles below the critical 
angle q~c for total reflection. The small increase in 
wavelength due to refraction therefore changes the 
scattering geometry from the Laue case, in which the 
diffracted X-rays travel into the crystal to form exit 
beams at the rear surface, to the Bragg case, where 
the diffracted beams are directed away from the front 
surface of the crystal. 

The excitation of a reflected diffracted beam in 
grazing-incidence scattering geometries is easily 
explained. When the incident beam is at the critical 
angle ~c with respect to the crystal surface, the inter- 
nal transmitted beam travels parallel to the interface 
with a wavelength slightly larger than the vacuum 
value, and is damped exponentially in the perpen- 
dicular direction. The specular reflected beam is gen- 
erated because the incident beam alone cannot satisfy 
the requirements for phase continuity at the inter- 
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Fig. 1. Two views of diffraction from a reciprocal-lattice vector H 
in the surface plane of a crystalline wafer, illustrating how a 
single reflection can generate either Bragg or Laue beams. (a) 
For incident angle 4) less than the critical angle for total reflection 
qbc, the exit beams consist of the usual specular beam Ro plus 
a Bragg diffracted beam RH. (b) Rotating the wafer about the 
vector H until 4) is much larger than 4), will result in the usual 
Laue diffracted beam TH and the Laue forward-diffracted (trans- 
mitted) beam To. Here the wafer is viewed edge-on. 
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face.* That is, two external waves are necessary to 
match the tangential components of the electric and 
magnetic fields with the one internal wave travelling 
parallel to the surface. If the crystal is then properly 
oriented so this internal wave can diffract from planes 
perpendicular to the surface, a diffracted wave will 
be excited which also travels parallel to the interface 
but deflected from the original wave's direction by 
twice the Bragg angle. Satisfying the boundary condi- 
tions for these two internal waves requires three exter- 
nal waves: the incident beam, a specular beam, and 
a Bragg-reflected diffraction beam. 

The transition from Laue to Bragg scattering can 
be visffalized by considering a thin parallel-sided slab 
(Figs. 1 and 2). If the incident beam is always 
maintained to diffract off H while the crystal is rotated 
about the q~ axis parallel to the H vector,t  the two 
Laue beams which exist for large angles of incidence 
will be transformed into a specular reflected beam 
and a reflected Bragg diffracted beam for grazing 
angles of incidence. This perspective suggests that 
internal waves which can couple to Laue beams are 

*This is explained in many texts on electromagnetism (e.g. 
Lorrain & Corson, 1970). 

t The angle q~ about the H axis is not the same as the angle 
between the incident beam and the surface. If the incident beam 
is at an angle 0 with respect to the H crystal planes and the crystal 
surface is rotated about the H direction by ~0 (Fig. 2), then 

sin q~ = sin q~ cos 0. 

Upper-case angles qb shall always refer to angles between a beam 
and the crystal surface, while lower-case angles ~ are the equivalent 
rotation angles about the H axis. In experiments it is convenient 
to align the crystal with the H direction parallel to a particular 
diffractometer axis, e.g. the ~0 axis. Thus it is the angles ~0 and 0 
which are accurately known, permitting calculation of ~. The 
various critical angles ~o,. in the following refer to the equivalent 
rotations about the H axis corresponding to the true grazing 
angles q~c. 
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Fig. 2. For incident angles comparable to ~c, all four beams can 
exist with finite intensities determined by • and the thickness 
of the wafer. Note that • is the angle of incidence, while ~o is 
the angle about the H axis through which the wafer has been 
rotated. The vector h indicates the direction normal to the crystal 
surface. 

an integral aspect of surface diffraction. In this paper 
we discuss the theory of surface dynamical diffraction 
from this perspective, emphasizing the simultaneous 
excitation of strong Bragg and Laue beams from a 
single surface reflection H. A geometrical description 
of dynamical surface diffraction based on dispersion 
surfaces and exit spheres is described, and the results 
of synchrotron measurements of Bragg-Laue excita- 
tions from a silicon wafer are explained in terms of 
this geometrical picture. In addition, we compare 
these results with calculations performed using a com- 
pletely general and exac t  procedure due to Colella 
(1974), in which no artificial distinctions are made 
between Bragg and Laue excitations. This program 
is shown to be very useful for surface dynamical 
diffraction. 

II. Dynamical diffraction theory 

One of the earliest published investigations of surface 
X-ray diffraction was by Marra, Eisenberger & Cho 
(1979), and a theoretical description using kinematic 
scattering was presented by Vineyard (1982). Dis- 
cussions of the dynamical interaction of surface 
beams with perfect crystals have been published 
by Afanas'ev & Melkonyan (1983), Aleksandrov, 
Melkonyan & Stepanov (1984) and Cowan (1985). A 
pictorial model of the appropriate dispersion surface 
geometry, which is discussed at length below, has 
been developed by Baryshevskii (1976), Andreev et 
al. (1982) and H6che & Briimmer (1986). These 
dynamical treatments are similar to the earlier works 
on extremely asymmetric diffraction in which one of 
the external beams is nearly parallel to the surface, 
by Farwig & Shiirmann (1967), Kishino (1971), 
Kishino, Noda & Kohra (1972), Bedynska (1973, 
1974), Rustichelli (1975) and H~irtwig (1976, 1977). 

All of these efforts begin with the dynamical diffrac- 
tion theory as originally formulated by Ewald 
(1916a, b, 1917) and later reformulated by von Laue 
(1931), in which a perfect crystal is represented by a 
periodic dielectric function (Batterman & Cole, 1964). 
In applying this theory to a specific scattering 
geometry, boundary conditions are imposed on the 
general solutions and certain approximations are 
made to simplify the equations. These analytic 
expressions are very useful for understanding the 
behavior of certain beams in particular geometries. 
Exact dynamical diffraction calculations can be per- 
formed by computer for any scattering geometry, 
however, using the completely general 'n-beam'  pro- 
gram developed by Colella (1974). The problem of 
solving for the wave vectors of all waves excited in 
a perfect crystal is reduced to the task of inverting 
and diagonalizing certain matrices, and the exact 
amplitudes of both the internal and external waves 
are then determined from the boundary conditions. 
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A. Dispersion surfaces and exit spheres 

To describe the role of the dispersion surface in 
grazing-incidence geometries, we shall first review the 
two-beam dispersion surface picture of the symmetric 
Laue diffraction geometry for a parallel-sided thin 
perfect crystal whose surfaces are perpendicular to 
the plane of diffraction (Figs. lb and 3). For waves 
inside the crystal, the dispersion surface is defined as 
all points in reciprocal space which can be the origin 
of pairs of plane wave vectors (Ko, KH) which are 
allowed solutions of the dynamical equations, whose 
tips lie at the point O, the origin of reciprocal space, 
and at H, the node of the reciprocal lattice responsible 
for diffraction. This surface can be approximated by 
two identical spheres centered on the points O and 
H which smoothly 'mix' at the plane of intersection 
to form two disconnected surfaces (Fig. 3). These two 
surfaces are known as the a and /3 branches, and 
their minimum separation in the plane of intersection 
is the Darwin width, whose magnitude is proportional 
to the strength of interaction between the X-rays and 
the crystal planes. (In the language of condensed- 
matter theory, these surfaces 'hybridize' at the 
Brillouin zone boundary and create a 'Bragg" band 
gap.) 

In addition to the dispersion surfaces for interior 
waves, Fig. 3 also shows two larger circles about the 
O and H nodes which represent the origins of all 
possible wave vectors belonging to exit beams. 
Denoted Lo and L , ,  the exit spheres have a radius 
k = 1/A where A is the X-ray wavelength in vacuum 
(or air). The radius K of the dispersion surface 
'spheres' away from the plane of intersection (i.e. 
away from the Bragg condition for strong diffraction, 
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Fig. 3. Dispersion surfaces and exit spheres for symmetric two- 
beam Laue diffraction. The a and fl surfaces associated with 
the O and H nodes are shown in cross section in the x - z  

diffraction plane. The larger circles about these nodes are cross 
sections of  the L o and L H exit-beam spheres. The line S corre- 
sponds to the incident surface of the crystal, where fi is the 
surface normal vector. The actual internal waves and exit beams 
excited in a particular orientation are determined by the intersec- 
tion of a line along fi with the dispersion surfaces and exit 
spheres. (The vertical position of fi here is set by having the 
intersection with L o  correspond to a wave vector parallel to the 
incident beam.) The separation between the exit spheres and 
the ~ surface has been greatly exaggerated for clarity. 

IKo l= lK,  I) is smaller than k by a factor of K, the 
dielectric constant, where 1 - K is of the order of 10 -5. 

To determine which wave vectors are actually 
excited for a particular scattering geometry, boundary 
conditions requiring phase continuity at the interfaces 
are imposed. This has been shown to be equivalent 
(Batterman & Cole, 1964) to drawing a vector fi along 
the crystal surface normal which intersects the Lo 
sphere at a position proportional to 0, the angle 
between the incident-beam wave vector and the (hkl) 
planes corresponding to H. The points of intersection 
of this line with the dispersion surfaces are called 'tie 
points', which are the origins of all allowed interior 
plane-wave vector pairs which connect O and H for 
the particular orientation of the crystal. Because the 
two plane waves associated with a tie point are cou- 
pled by KH = Ko + H, they act coherently to form a 
single wave field in the crystal. (These wave fields are 
precisely analogous to the Bloch wave fields which 
describe electron states in a crystal.) The intersections 
of fi with the exit spheres are called 'exit points', and 
determine the wave vectors of all exit beams propagat- 
ing outside the crystal. An exit point on the O sphere, 
for example, is the origin of an exit wave vector which 
terminates at O. 

The surface normal will generally intersect both 
dispersion surfaces twice, creating four tie points 
which excite four distinct wave fields inside the crys- 
tal, i.e. eight plane waves. Four of these plane waves 
propagate to the front (incident) surface and four 
propagate towards the rear surface. (The most general 
case would include two sets of dispersion surfaces, 
one set each for polarization vectors parallel and 
perpendicular to the diffraction plane, which leads 
to the excitation of up to eight internal wave fields. 
Without loss of generality, we restrict our attention 
to a single polarization state.) Maxwelrs equations 
combined with the appropriate periodic dielectric 
function are required to determine the relative 
intensities of these waves. Of the four (eight) possible 
wave fields, typically only a few will have significant 
intensities unless 0 is nearly equal to the Bragg angle. 

For symmetric diffraction from a parallel-sided 
crystal, the external beams are determined by the exit 
points on the Lo and LH spheres created by the same 
surface normal vector fi utilized above. A single 
incident beam can thus generate up to four exit beams, 
two from each surface. We denote the exit beams 
reflected from the incident surface by the symbols Ro 
and RH, and the transmitted exit beams originating 
from the back surface are denoted To and TH. For 
the symmetric Laue case considered here, these are 
the Laue diffracted beam (Tn), the Laue forward- 
diffracted beam (To), the Bragg diffracted beam ( R , )  
(which propagates antiparallel to the incident beam 
in this scattering geometry) and the specular reflected 
beam (Ro). The last two will have extremely small 
intensities for large angles of incidence. 
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We n o w  turn  our  a t t en t ion  to symmet r i c  Laue  
dif f ract ion at graz ing inc idence ,  where  the  inc iden t  
beam makes  a small  angle  • wi th  respect  to the 
surface.  The  d i spe r s ion  surfaces  for in te r ior  waves 
are of  course  the same as before ,  but  now the surface  
normal  fi is nea r ly  p e r p e n d i c u l a r  to the d i f f rac t ion 
p lane  (i.e. the p l ane  c o n t a i n i n g  the vector  H and  the 
inc iden t  beam) .  Fig. 4 shows an e x p a n d e d  three-  
d i m e n s i o n a l  view of  the d i spe rs ion  surfaces.  The  cross 
sect ions o f  the a and  fl surfaces  in the x - z  p lane  are 
the same as those  s h o w n  in Fig. 3. The cross sec t ion  
in the x - y  plane ,  cons i s t ing  of  two concen t r i c  circles,  
now con ta ins  the re levant  por t ions  of  the d i spe r s ion  
surfaces  s ince the crystal  surface  normal  fi is para l le l  
to the y axis.  

The  vector  fi aga in  can  intersect  four  tie po in ts  for  
in ter ior  waves ,  exci t ing  the eight  wave vectors  d r awn  
in Fig. 4. Fou r  of  these  waves  p ropaga te  towards  the 
back  of  the crystal  a n d  four  towards  the f ront ,  bu t  
all e ight  are t rave l l ing  nea r ly  paral le l  to the surface.  
We shall  a lso see be low tha t  these  eight  waves,  and  
thus  all four  exit  beams ,  can  each be s t rong ly  exci ted  
near  graz ing inc idence  over  a small  range  of  • and  
0 values.  

We shal l  cons ide r  several  cases in which  the graz ing  
angle  • is var ied  whi le  the angle  0 m a d e  by  the 
inc iden t  p l ane  wave with  respect  to the H di f f rac t ion 
p lanes  is fixed to cer ta in  values.  C o n s i d e r  first a va lue  

of  0 m u c h  less t han  0B, the Bragg angle.  The  cross 
sect ion of  the  d i spe r s ion  surface  con t a in ing  the  sur- 
face no rma l  fi is s h o w n  in Fig. 5 (a ) ,  wh ich  consis ts  
of  on ly  the L o  and  a circles. The  vector  fi in tersects  
the L o  circle twice  for finite values  of  @, i nd i ca t ing  
tha t  bo th  a specular*  ref lected beam R o  and  a t rans-  
mit ted b e a m  To can exit  the  spec imen.  For  q~ < qOc, 
however ,  fi does  not  in tersect  the a b ranch ,  so travel-  
l ing waves  ins ide  the crystal  are not  exci ted.  The  
specu la r  b e a m  will the re fore  have  near ly  the same 
in tens i ty  as the inc iden t  beam,  a l t h o u g h  for  a 
sufficiently th in  crystal  a small  a m o u n t  of  ene rgy  can 
' leak '  t h r o u g h  to form a t r ansmi t t ed  beam via excita-  
t ion of  evanescen t  waves.  For  @ ~> @c two tie po in t s  

* Note that for 0,~ 0B the ratio of the radii of the L o and a 
circles is K, so 

COS q~ ~ COS (j0 = K, 

in agreement with the usual derivations of the critical angle for 
non-diffracting geometries (e.g. James, 1982, p. 171). 
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Fig. 4. Tie points and dispersion surfaces for glancing incidence 
diffraction. The a and /3 curves in the x-z  plane are enlarged 
from Fig. 2. The surface normal fi, however, is now perpendicular 
to the x - z  plane, so the tie points of fi with the dispersion 
surfaces now lie in the x-y  plane. The pertinent dispersion 
surface cross sections are now concentric a and /3 circles. In 
this figure fi corresponds to 0 = 0B and a value of q~ large enough 
to intersect both branches. These four tie points correspond to 
eight internal waves, whose wave vectors are indicated by the 
solid and dashed lines from the tie points to the nodes O and 
H. Note that all eight waves are propagating nearly parallel to 
the surface, with half travelling towards the front and half 
travelling towards the back of the crystal. 
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Fig. 5. Dispersion surface and exit beam circles for glancing 
incidence diffraction. (a) For 0 ¢ 0e the surface normal vector 
fi will only intersect the Lo sphere and the a branch of the 
dispersion surfaces. The critical angle ~c corresponds to fi being 
tangent to the a circle. (b) For 0 slightly less than 0B, fi can 
intersect all four surfaces: Lo, o~, LH and /3. For ~ = ~,,, fi is 
tangent to the ~ circle, which corresponds to the critical angle 
for exciting travelling waves into the crystal. (c) For 0 = 0B, the 
Lo and LH circles are coincident. ~ is the critical angle for 
exciting internal travelling waves on the a branch, and ~ is 
the critical angle for the/3 branch. 
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on the a circle will be strongly excited, but the trans- 
mitted exit beam will quickly become more intense 
at the expense of the specular beam as qb increases.* 
The transmitted-beam intensity will depend on the 
thickness of the crystal due to photoelectric absorp- 
tion of the X-rays. 

Next consider an angle 0 only slightly smaller than 
0B. The dispersion surface cross section, depicted in 
Fig. 5(b), now includes the Lo, a, L ,  and/3 branches. 
Only the specular exit beam Ro is strongly excited 
for q~ < q)~ just as in the previous case, but note that 
q)~ is less than q)c when 0 is close to 0n. For q~,~ < q~ < 
q~, the transmitted exit beam To gains intensity, and 
the diffracted exit beams R ,  and T ,  become fully 
excited when q)> q)H. The two tie points on the LH 
circle correspond to the Bragg-diffracted beam R ,  at 
the front surface and the Laue-diffracted beam 7", at 
the back surface, which can both be active since the 
a branch allows energy to flow through the crystal. 
The transmitted exit beam To now becomes the 'Laue 
forward-diffracted' beam. The two Laue beams To 
and TH become more intense as q) increases, 
especially when q~ > q)t3 results in tie points on the 
/3 surface. (Note that for even smaller values of 0B - 0 
the LH exit beam circle has a larger diameter than 
the a and/3 branches, so q),  < q)~ < ~t3.) 

Although only the specular beam Ro is strongly 
excited for qb < qb in the above case, X-ray energy 
is present inside the crystal in the form of exponen- 
tially damped waves. These evanescent waves couple 
to the a and/3  branches of the dispersion surfaces, 
and to the LH exit-beam sphere. Since the direction 
of energy flow associated with the specular beam is 
parallel to the surface (neglecting absorption), the 
waves near the surface corresponding to evanescent 
excitations of the a,/3 and /or  L ,  circles also propa- 
gate parallel to the surface. Since a tie point on the 
a and /3 surfaces corresponds to the origin of two 
wave vectors, and an exit point on the LH exit-beam 
circle corresponds to one wave vector, up to five 
evanescent waves may participate in specular reflec- 
tion near the Bragg angle. This topic has been exten- 
sively discussed by Andreev et al. (1982), Cowan 
(1985) and Cowan et al. (1986). 

When the angle 0 is exactly equal to the Bragg 
angle 0B, the Lo and Ln circles are coincident, as 
shown in Fig. 5(c). The diffracted H beams R .  and 
T.  can therefore be excited for all values of q~. Since 
interior travelling waves are not excited for qb < qb,  
only the Bragg-diffracted beam RH and the specular 

* How strongly a tie point is excited cannot be determined from 
just the dispersion surface, which only selects those wave vectors 
which are allowed by conservation of  energy and wave momentum. 
The actual intensities of  the allowed waves must be determined 
by applying boundary conditions to the solutions of the dynamical 
equations. The statement that the tie point coupled to the specular 
beam is less strongly excited at larger angles of  incidence, for 
example, is easily proven from the Fresnel boundary conditions. 

reflected beam Ro will have significant intensity. The 
intensities of these two beams calculated with the 
exact 'n-beam' procedure described below are plotted 
as a function of q~ in Fig. 6. Note that nearly all of 
the incident-beam intensity is shared between these 
two beams for q~ < ~,,, with the Bragg-diffracted beam 
R ,  starting at zero and growing to nearly -0"5Io at 
q~ = ~ .  For q~,~ < q~ < q~t3, however, a significant frac- 
tion of the incident intensity is no longer present in 
the reflected beams. The excitation of a branch tie 
points produces internal waves travelling away from 
the front surface, which couple some of the missing 
intensity to the Laue beams To and TH at the back 
surface of the crystal. (The remainder is absorbed by 
the crystal.) For ~p> q~t3 the specular and Bragg- 
diffracted beams Ro, and RH quickly die out. 

Similar excitation processes occur for angles 0 
greater than 0~. Since the L ,  circle will now have a 
diameter larger than the Lo circle, there will be two 
exit points intersected on the LH circle for all values 
of q). The diffracted exit beams therefore cannot be 
evanescent. 

B. Colella' s matrix formulation of dynamical 
diffraction 

The amplitude and direction of all plane waves 
generated inside a perfect crystal for a particular 
scattering geometry are determined by Maxwell's 
equations for electromagnetic waves propagating in 
a medium with a spatially periodic dielectric function. 
The resulting set of coupled equations can be reduced 
to the following form [Colella (1974), following 
Zachariasen (1945)]: 

(k 2 - K 2 ) D ,  - ~. ~ , _ j [ ( K , . D j ) K , - K 2 D j ] = 0  (1) 
J = l  

where Kj is the wave vector associated with the j t h  
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Fig. 6. Reflectivity profiles calculated with the 'n-beam' program 
(Colella, 1974). The intensities of the Ro specular beam and the 
RH Bragg diffracted beam are calculated for a ( l iT) silicon 
surface with H = [220]. These curves are ~ scans for a constant 
0 = 0B, with an X-ray energy of 8.0 keV. The intensities are 
normalized to the incident-beam intensity. 
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node of the reciprocal lattice, Dj is the complementary 
displacement vector and aFj is the j th  Fourier com- 
ponent of the polarizability per unit volume times 47r. 
(Note that the polarizability components ~j are pro- 
portional to the usual structure factors Fj, which are 
the Fourier components of the electron density.) The 
index i =  1 , 2 , . . . ,  n corresponds to those nodes of 
the reciprocal lattice which contribute to the diffrac- 
tion, so (1) is actually a set of n coupled vector 
equations. 

For the simple case where the incident X-ray beam 
strongly interacts with only a single set of (hkl) planes 
corresponding to the reciprocal-lattice vector H, only 
two equations containing the origin O and the node 
H have solutions with significant intensities: 

[ k 2 - ( 1 -  ~Fo ) K 2o]D o + aFr~K 2oDH 

= ~ o ( K o  • DH)Ko 
(2) 

aI,'HK2HDo + [ k 2 - ( 1 -  ~o) K2  ]DH 

= aF, (KH • Do)KH. 

The solutions of (1) are discussed at length by 
Colella (1974). If we assume the existence of a wave 
with a particular wave vector Ko inside an infinite 
perfect crystal, then the equations give the relative 
amplitudes and wave vectors of all other waves which 
are simultaneously excited by the Ko wave. For a 
parallel-sided crystal with an external plane wave 
beam incident upon the front surface at an angle q~ 
and also making an angle 0 with respect to a particular 
set of (hkl) planes, the allowed waves are determined 
by applying Fresnel boundary conditions at both 
surfaces. Phase continuity requires that the tangential 
components of the electric and magnetic field ampli- 
tudes and the normal components of the electric 
displacement and magnetic induction amplitudes be 
conserved at the interfaces. The imposition of these 
boundary conditions is the mathematical equivalent 
of determining the tie points of the dispersion surfaces 
and the exit points of the exit beam spheres using the 
surface normal vector fi, as described above. 

Equations (1) and (2) with the appropriate boun- 
dary conditions for symmetric diffraction will 
describe four exit beams, two Bragg beams at the 
front surface and two Laue beams at the back surface. 
In most scattering geometries the only measurable 
exit beams for a particular H reflection will be either 
Bragg or Laue, but not both. H is then referred to as 
either a Bragg reflection or a Laue reflection. 
Equations (1) and (2) can be correspondingly sim- 
plified (linearized) in a manner which eliminates the 
two exit beams of negligible intensity. This is done 
in traditional descriptions of dynamical theory, and 
is perfectly justified for most applications. As was 
first pointed out by Colella (1974), however, a reflec- 
tion H which excites beams travelling parallel to a 
surface can have interior wave components directed 

towards either surface of the crystal. Such a reflection 
can excite both Bragg and Laue beams, so the sim- 
plified equations which throw out half of the exit 
beam solutions will not always be adequate. Colella 
has shown how (1) can be exactly solved by inverting 
one 2n x 2n matrix and diagonalizing another 4n x 4n 
matrix, where n is the number of nodes of the 
reciprocal lattice which contribute to diffraction, and 
both polarization states are included. 

The n-beam matrix description of dynamical 
diffraction is especially powerful when the X-rays are 
interacting with more than one set of (hkl) planes, 
i.e. for n > 2 .  [For examples, see Colella (1974), 
Tischler & Batterman (1986), and Schmidt & 
Colella (1985).] For the relatively simple case con- 
sidered here where only the O and H nodes contribute 
(n =2) ,  the n-beam approach is essential to treat 
exactly the simultaneous Bragg and Laue contribu- 
tions. An additional benefit of the 'n-beam approach 
is that the same computer program can be used 
without modification to determine the diffracted 
waves for any value of • and 0, ranging from the 
grazing incidence considered here (O < cbc) to normal 
incidence Bragg angles (0B -~ 7r/2) (Colella & Luccio, 
1984). 

III. Experimental results and comparison with theory 

We have performed X-ray measurements on a thin 
slab of nearly perfect silicon which illustrate the coup- 
ling between Laue and Bragg beams for grazing- 
incidence geometries. We show that the qualitative 
behavior is described well by the geometrical disper- 
sion surface picture given above, and that this Bragg- 
Laue regime can be quantitatively modelled with 
Colella's exact matrix formulation of dynamical 
diffraction. 

The specimen was a 5.0 cm diameter silicon wafer, 
commercially obtained with a standard mirror-like 
finish on both sides and a thickness of 0.20 mm. The 
surfaces were parallel to {111} planes, so there were 
{220} planes perpendicular to the surfaces which pro- 
vided the reciprocal-lattice vector H = [220] in the 
plane of the surface. The 220 reflection was selected 
for all diffraction measurements in part because it is 
a 'full' reflection, i.e. all atoms in the unit cell scatter 
in phase, which minimizes the absorption of the a- 
branch waves in the crystal near the Bragg angle. 

The specimen was briefly etched in a 95% HNO3- 
5% HF solution to remove excess surface oxides. A 
thin film of AuPd alloy approximately 40 A thick was 
sputtered onto one face of the wafer.* X-ray fluores- 
cence from this layer was intended to serve as a 
detector of diffracted X-ray intensity at this sur- 
face, especially in the regime where the TH beam is 

* The authors are indebted to J. Liu and N. Giordano at Purdue 
University for sputtering the AuPd layer onto the specimen. 
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evanescent. These measurements proved not to be 
very revealing in themselves, but the AuPd layer did 
have a somewhat unexpected effect on the reflected 
surface diffraction beams, as described below. 

This crystal was mounted on a four-circle diffrac- 
tometer with the [220] direction aligned with the 
axis, at the A-3 experimental station at the Cornell 
High Energy Synchrotron Source (CHESS). Syn- 
chrotron radiation was monochromated by a (220) 
silicon double-crystal monochromator which was 
normally detuned slightly to reduce the A/2 content 
of the beam. The specimen was oriented such that a 
220 reflection diffracted the monochromated beam in 
a non-dispersive manner. The incident beam was 
reduced by horizontal slits to a width of 0.075 mm, 
and the full vertical height of the beam (about 5 mm) 
was employed. The flux reaching the specimen was 
typically about 107 photons s -l 

Diffraction scans were usually made by keeping 
the incident angle q~ fixed while scanning the angle 
0 through the 220 reflection. For values of q~ near the 
critical angle ~o¢, both the Laue diffracted beam 7"220 
and the nearly parallel Bragg reflected beatn Rno 
could be excited for slightly different values of 0. A 
single wide-open scintillation detector was positioned 
to measure simultaneously both of these diffracted 
beams. An example of such a measurement is given 
in Fig. 7, where ~o =0.73 ° and the X-ray energy is 
11.95 keV. Note that these data include broadening 
due to both the monochromator transmission func- 
tion and the horizontal divergence of the synchrotron 
radiation. This plot shows at once that a single node 
H can produce Bragg and Laue beams. 

It is well known for ordinary scattering geometries 
(q~ >> q~c) that Bragg's law 

nh = 2dhk! sin 0B 
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Fig. 7. Measured [220] Bragg and Laue diffracted beams. An 
11.95 keV (1.04 ]k) X-ray beam is incident to the (l iT) silicon 
wafer surface at ~o = 0.75 °, while the diffraction angle 0 is scan- 
ned near 0B for the 220 reflection. A single detector is measuring 
both beams. 

holds exactly for symmetric Laue reflections, but must 
be modified to include a small refractive shift g0 for 
Bragg reflections (Batterman & Cole, 1964): 

nA = 2dhkt sin (0B + 60). 

The size of this shift is of the order of the intrinsic 
Darwin width of the reflection, and depends on the 
average electron density (i.e. the O Fourier com- 
ponent of the electron scattering density). At grazing 
incidence the Laue diffracted beam TH still occurs at 
exactly 0~, but the shift in the Bragg diffracted beam 
RH is now a function of ¢, and can be much larger 
than the usual refractive shift. Note that measuring 
both the Laue and the Bragg diffracted beams in a 
single scan provides a precise value for this shift, 
since the Laue beam TH serves as a fiducial reference 
for 0~. 

We can use our geometrical picture of the disper- 
sion surfaces and the exit spheres to show the relation- 
ship between 60 =-- 0 - OB and the angle q~. In Fig. 8(a) 
a cross section of the Lo and LH exit spheres is shown 
for a small value of 60. The surface normal fi is drawn 
for a particular incident beam ~, which intersects an 
exit point on the LH circle indicating a different angle 
~' for the Bragg diffracted beam RH. Note that 

ro cos ~ = r H c o s  ~' 

where ro and rH are the radii of the 
circles. From Fig. 8(b) it is seen that, 
of 60, 

ro = k cos (OB + 60) 

rH = k cos (OB - 60). 

(3) 

Lo and LH exit 
for small values 

(4) 

Combining these two results and treating q~, q~' and 
60 as small quantities, we have* 

,2 (p2 ~o = + 4 3 0 t a n  0B. (5) 

Finally we need to impose a condition which should 
correspond to the peak intensity of the Bragg reflected 
beam R , .  Note that in general there are two exit 
points on the LH circle. For q~ larger than q~,~ this can 
lead to both Laue and Bragg beams. We find empiri- 
cally that choosing 60 (for a given ~o) such that ~o'= 0 

* It can be shown that this result is equivalent to equation (3) 
of Afanas'ev & Melkonyan (1983): 

~2 = ~,2 + c~, (3) 

w h e r e  

= [(k 0 +H) 2- k2]/k 2. 

Similarly, this result can also be compared with equation (3) of 
Cowan (1985): 

kH± = +k( ~2 + 2y) t/2 (3) 

where y = 80 sin 20B. Substituting k ~ ' =  kH± and squaring yields 

4,,2= q)2+ 280 sin 20s. 

This can be derived from equation (5) above by noting again that 

sin tit, = sin q~ cos 0. 
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will correspond approximately to the peak in the 
Bragg reflected beam. That is, we choose fi so that it 
is tangent to the LH circle, exciting only one exit 
point. This observation is borne out by the results of 
numerical calculations, as noted below. 

We can use this result to determine the value of q~ 
for each 0 scan, which can be difficult to determine 
accurately with the experimental apparatus. We 
assume that the Bragg reflected peak positions corre- 
spond to q~'= 0, so 

= ( -430  tan 0B) 1/2. 

We plotted the nominal values of ~o versus 
( -460  tan OB) 1/2 for 15 0 scans at different q~ values, 
and found that the data were fit well by a straight 
line. The intercept of this line at 30 = 0 determines 
the origin of the q~ axis, which provided a correction 
to the nominal values of q~. These data with the proper 
q~ axis are shown in Fig. 9. 

A set of 0 scans corresponding to three of the points 
in Fig. 8 is presented in Fig. 10. Plotted together are 
the (Bragg) R220 and (Laue) T220 peaks for q~ values 

y 

I Lo 

J "-L. 
n I 

LH 

x 

I 
(b) 

Fig. 8. Exit-sphere diagrams for determining Bragg diffracted 
(RH) beam exit angle q~'. (a) The cross section of the L o and 
L H exit spheres is shown for 8 slightly less than 0B, where Lo 
has a radius ro and LH has a radius rH. The incident beam 
makes the glancing angle q~ to the entrance surface, while the 
R~ beam makes the angle ~', as indicated by the exit points. 
(b) View of the exit surfaces in a plane containing H. The 
deviation from % is 60. Note that the dashed line indicates the 
plane shown above in part (a). The radius of the exit spheres 
is k = l/A, where h is the X-ray wavelength in vacuum. 

of 0.53, 0.73 and 0.88 ° for an X-ray energy of 
11-95 keV (A = 1.04/~,). Note that the Laue peaks 
show no significant shift in O, wl~ereas the Bragg peaks 
are displaced from 0B by amounts which are many 
times larger than the Darwin widths. (Slight variations 
in the Laue peak position and line shape are expected 
due to the changing a and /3 contributions as a 
function of ~o.) The values of 0 - 0 B  match well the 
predictions of the geometrical dispersion surface-exit 
sphere picture, a conclusion which can also be drawn 
from the straight-line fit in Fig. 9. 

The n-beam program was used to generate theoreti- 
cal curves for the appropriate values of q~ and 0, and 
the results are plotted in Fig. 10. Considering that the 
data are broadened by both the horizontal divergence 
of the synchrotron and the double monochromator  
transmission function, we feel that the general agree- 
ment between theory and experiment'for the position 
and intensity of the diffraction peaks is fairly good. 
Since there can be little doubt of the accuracy of the 
n-beam program, this agreement can be taken as 
verification that the specimen was of high quality and 
that the measured values of 0 -  0B and q~ were accu- 
rate. More generally, these three 0 scans demonstrate 
how the diffracted intensity gradually shifts from the 
Laue beam to the Bragg beam as q~ is diminished, 
although there is a large span of q~ (many times larger 
than tpc) over which both beams have considerable 
intensity. 

9- 

(a) 
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Fig. 9. Plot of  the measured separation of the Bragg and Laue 
diffracted beams. Fifteen 0 scans similar to. that shown in Fig. 
6 were obtained for various values of glancing angle ~0. The q~ 
for each scan is plotted against the quantity [ -460  tan 0~] 1/2, 
where 80 = 0 - 0 B  is the measured angle between Bragg and 
Laue diffracted beams. The straight-line fit is consistent with the 
geometrical model illustrated in Fig. 8. 
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All of the above measurements were made with the 
incident X-ray beam striking the clean silicon surface, 
i.e. the back surface had the 40 ,& sputtered layer of 
AuPd alloy. This metal film has a negligible effect on 
the Laue beam intensities, and no effect at all on the 
Laue angle 0~, so its presence has been ignored so 
far. The situation was quite different, however, when 
the X-ray beam was incident upon the AuPd surface. 
The RH Bragg reflected beam could no longer be 
detected, although the Ro specular beam and the To 
and TH Laue beams were all present as before. 

This unanticipated result can be explained by treat- 
ing the thin AuPd film as a continuous medium whose 
dielectric constant is smaller than that of silicon or 
of air (i.e. KAuPd ( KSi ( Kair "~-'~ 1). This is expected from 
the greater electron density in AuPd. External reflec- 
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Fig. 10. Comparison of the experimental Bragg-Laue curves with 
the 'n-beam' theory. (a) The three measured curves showing 
both the Bragg R22 o beam and the Laue T22 o beam as a function 
of 60 were obtained for glancing angles ~ = 0.530, 0.73 and 
0.88 °. (b) The calculated curves are generated by the n-beam 
program for these ~o values. The measured intensities are each 
multiplied by the same arbitrary scale factor. The discontinuous 
drop on the low-angle side of the calculated R22o curves corre- 
sponds to the beam becoming evanescent. 

tion of the Ro and RH beams at an air-silicon inter- 
face is a consequence of the X-ray wavelength (A = 
l /K) in silicon being longer than the wavelength in 
air. At the AuPd-Si interface, the wavelength in 
silicon is shorter than the wavelength in AuPd, so 
external reflection is not possible. The observed Ro 
specular beam is simply that externally reflected from 
the air-AuPd interface. Because the AuPd layer is so 
thin, much of the incident intensity is transmitted to 
the silicon interface, even for • < ~g, .  This intensity 
will excite travelling waves inside the silicon, which 
couple to the To and TH Laue beams at the back 
surface. 

What is perhaps surprising is the apparent bulk-like 
nature of this 40/~ sputtered film with respect to its 
X-ray dielectric properties. The silicon wafer had 
been chemically polished and etched before the depo- 
sition, but the surface was undoubtedly rough on a 
microscopic scale and had to include some superficial 
silicon oxide. The 40 A overlayer must also be rough 
and probably discontinuous, although the AuPd alloy 
was chosen for its well known tendency for forming 
continuous films at somewhat greater thicknesses. 
Despite these imperfections, the lack of a Bragg 
diffracted beam necessarily indicates the presence of 
an interface between silicon and a material with an 
effective dielectric constant less than that of silicon 
(i.e. the effective electron density had to be greater 
in the overlayer than in the silicon). The naturally 
occurring surface oxide layer does not have a similar 
effect on surface diffraction because the dielectric 
constant of silicon oxides is larger than that of silicon, 
although Bernhard et al. (1987) have shown that 
surface diffracted profiles are weakly influenced by 
the oxide layer. 

IV. Concluding remarks 

We have demonstrated both experimentally and 
theoretically that grazing-incidence diffraction from 
planes perpendicular to a crystal surface leads to both 
Bragg and Laue exit beams. The data from syn- 
chrotron-based measurements of a thin (111) silicon 
wafer can be qualitatively understood by constructing 
dispersion surface diagrams appropriate for a graz- 
ing-incidence geometry. In particular, the large split- 
ting in 0 values observed for the Bragg and Laue 
diffracted beams for various grazing angles were quite 
accurately described by (5), which was derived from 
geometrical considerations. The exact n-beam theory 
of Colella (1974) was shown to describe accurately 
grazing-incidence Bragg-Laue X-ray diffraction, a 
further example of the power and versatility of the 
n-beam program. 

This work extends many previous treatments of 
semi-infinite perfect crystals to the case of a crystal 
slab of finite thickness. In general the previously 
derived results (Afanas'ev & Melkonyan, 1983; 
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Cowan ,  1985) for  Bragg beams  carry over  to the 
th in-crys ta l  case cons ide red  here. One  i m p o r t a n t  
except ion ,  however ,  occurs  when  the 0 values  o f  the 
Bragg and  Laue dif f racted beams  are very close 
toge ther  (i.e. for  qb< q~c). In this case the s t rongly  
exci ted in te rna l  waves t ravel l ing towards  the rear  
surface to genera te  the  Laue exit beams  are also 
par t ia l ly  ref lected back  towards  the f ront  surface.  
These  waves can  then  con t r ibu te  to the in tens i ty  of  
the Bragg exit beams,  a l t h o u g h  in pract ice  this effect 
is usua l ly  negligible .  Ca lcu la t ing  the m a g n i t u d e  of  
these ' i n t e rna l ly  reflected Laue waves '  requires  a 
m e t h o d  such as the n -beam theory  which  retains  all 
o f  the so lu t ions  of  the d y n a m i c a l  equat ions .  

We are grateful  for  the exper t  ass is tance o f  the staff 
o f  the Corne l l  High Energy  Synch ro t ron  Source  
(CHESS)  dur ing  the X-ray  measuremen t s ,  and  we 
t h a n k  Professor  R. Cole l l a  for  a copy  of  his n -beam 
p rog ram and  for he lpfu l  conversa t ions .  One  of  us 
(TG) acknowledges  the suppor t  o f  a Dav id  Ross 
Fel lowship .  This  work  was suppor t ed  by tl~e Na t iona l  
Science F o u n d a t i o n  t h r o u g h  Gran t  No.  D M R -  
8703993. 
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Abstract 

Von Mises formulas for quartet invariants [Giacovazzo 
(1976). Acta Cryst. A32, 91-99], even if useful in most cases 
of practical interest, suffer from some systematic errors. A 
new von Mises formula is suggested with better theoretical 
features. 
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Symbols 

(~ = ~h -~ ~k "]- ~l -- ~h+k+l 

R =ILl 
e = R 2 - 1  

El = R1 exp (i~1) = Eh exp (iq~h); 
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